首页> 外文OA文献 >Well-conditioned boundary integral equation formulations for the solution of high-frequency electromagnetic scattering problems
【2h】

Well-conditioned boundary integral equation formulations for the solution of high-frequency electromagnetic scattering problems

机译:条件良好的边界积分方程式   解决高频电磁散射问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present several versions of Regularized Combined Field Integral Equation(CFIER) formulations for the solution of three dimensional frequency domainelectromagnetic scattering problems with Perfectly Electric Conducting (PEC)boundary conditions. Just as in the Combined Field Integral Equations (CFIE),we seek the scattered fields in the form of a combined magnetic and electricdipole layer potentials that involves a composition of the latter type ofboundary layers with regularizing operators. The regularizing operators are oftwo types: (1) modified versions of electric field integral operators withcomplex wavenumbers, and (2) principal symbols of those operators in the senseof pseudodifferential operators. We show that the boundary integral operatorsthat enter these CFIER formulations are Fredholm of the second kind, andinvertible with bounded inverses in the classical trace spaces ofelectromagnetic scattering problems. We present a spectral analysis of CFIERoperators with regularizing operators that have purely imaginary wavenumbersfor spherical geometries. Under certain assumptions on the coupling constantsand the absolute values of the imaginary wavenumbers of the regularizingoperators, we show that the ensuing CFIER operators are coercive for sphericalgeometries. These properties allow us to derive wavenumber explicit bounds onthe condition numbers of certain CFIER operators that have been proposed in theliterature. When regularizing operators with complex wavenumbers with non-zeroreal parts are used, we show numerical evidence that those complex wavenumberscan be selected in a manner that leads to CFIER formulations whose conditionnumbers can be bounded independently of frequency for spherical geometries.
机译:我们提出了几种版本的正则化组合场积分方程(CFIER)公式,用于求解具有完美导电(PEC)边界条件的三维频域电磁散射问题。就像在组合场积分方程(CFIE)中一样,我们以电磁偶极层电势组合的形式寻找散射场,该电势涉及具有规则化算符的后一种边界层的组成。正则化算子有两种类型:(1)具有复波数的电场积分算子的修改版本,以及(2)在伪微分算子意义上的那些算子的主要符号。我们证明,进入这些CFIER公式的边界积分算子是第二类Fredholm,并且在电磁散射问题的经典迹线空间中具有有界逆的可逆性。我们使用正则化算子对CFIERoperator进行频谱分析,正则化算子对于球形几何图形具有纯虚数的波数。在对耦合常数和正则化算子的虚波数的绝对值进行一定假设的情况下,我们证明了随后的CFIER算子对于球面几何具有强制性。这些特性使我们能够推导文献中已提出的某些CFIER算子的条件数的波数显式边界。当使用具有非零实部的复杂波数的正则化算子时,我们显示了数值证据,表明可以选择那些复杂波数的方式,从而导致CFIER公式的条件数可以不受球形几何形状频率的限制。

著录项

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号